Spring Test #1 – Review – Chunk #1, 2, 3

- 1. LDF, Dipole-Dipole, Hydrogen "bond"
- 2. H2, O2, CO2 CO, H2S, HF H2O, NH3
- 3. DNA and proteins
- 4. HB, LDF, HB, HB, DP-DP, LDF, DP-DP
- 5. LDF, DP-DP, HB lonic, Covalent
- 6. When the electrons are not evenly distributed around a molecule
- 7. See your notes!
- 8. P, P, NP, NP, NP, P, NP
- 9. If you don't know it is bent you would think it is non-polar. Once you know it is bent you know it is polar

- 10. CH4 (LDF) < CH3OCH3 (DP-DP) < CH3OH (HB)
- 11. CH3CH2OH because it has H-bond, the other only has DP-DP
- 12. See your "argument from evidence!"
- 13. Any ionic substance like NaCl has ionic lattice, any metal like Fe has metallic bonds, and graphite and diamond have network covalent
- 14. Very very high!
- 15. Graphite and diamond
- 16. When you have the same substance at the end just a different form (ice and water)
- 17. When you make brand new subtances/molecules
- 18. A physical trait big/small, color, etc
- 19. The way something behaves chemically "it can burn" or "it can react with oxygen" etc

- 20. Melting, boiling, ripping, smashing, cutting
- 21. Melting, freezing, condensing, vaporizing, deposition, sublimation
- 22. color change, order change, precipitate forms, light is emitted, temperature change
- 23. MEMORIZE YOUR IONS!!!!

- 20. Melting, boiling, ripping, smashing, cutting
- 21. Melting, freezing, condensing, vaporizing, deposition, sublimation
- 22. color change, order change, precipitate forms, light is emitted, temperature change
- 23. MEMORIZE YOUR IONS!!!!

SPR	ING BENCHMARK #1 Review Problems – CHUNK #2	CEY
Q#	Balance the following equations using the smallest whole numbers possible.	Type
1	$\underline{\mathcal{A}}_{Mg(s)} + \underline{Q}_{2(g)} \longrightarrow \underline{\mathcal{A}}_{MgO(s)}$	Synth
2	$2 C_8 H_{18}(g) + 25 O_2(g) \longrightarrow 16 CO_2(g) + 18 H_2O(g)$	Comb.
3	$\underline{2}_{Cu(s)} + \underline{H}_{2}O(g) \longrightarrow \underline{H}_{2}(g) + \underline{Cu}_{2}O$	SR
4	$\underline{2}$ AgCl (aq) + \underline{H}_2 S(aq)> \underline{A} g ₂ S(s) + \underline{A} _HCl(aq)	DR
5	$\CaCO_3(s) \longrightarrow \CaO(s) + \CO_2(g)$	Decomp.
, 6	$g_{Cu(s)} + \underline{S_8(s)} \longrightarrow g_{CuS(s)}$	Synth.
7	$H_2S(aq) + 2$ NaOH(aq) $\rightarrow 2$ H(0H) $H_2S(aq) + 2$ NaOH(aq) $\rightarrow 2$ H ₂ O(l) + Na ₂ S(aq)	DR
8	$Al_2(SO_4)_3 + 3 Ca(OH)_2 \longrightarrow 2 Al(OH)_3 + 3 CaSO_4$	DR
9	<u>ع</u> Al + <u>له</u> HCl —> <u>a</u> AlCl ₃ + <u>3</u> H ₂	SR

Q#	Predict the products below-	91
3611	Predict the products, balance the equation, then classify the type of reaction:	Туре
10	3 Na+_FeBr3 > Fe + 3NaBr	5R
11	2 NaOH+H2SO4 → Na2SO4 +2H(0H)	DR
12	$C_2H_4O_2 + 2O_2 \rightarrow 2CO_2 + 2H_2O$	Comb.
13	NH ₃ +H ₂ O → NH5 O	Synth.
14	PbSO4+2 AgNO3 > Ag2504+ Pb(NO3)2	DR
15	2 PBr3 > 2 P + 3 Brz	Decomp.

16	<u>b</u> HBr + 2 (111) ≥ Fe Br 3 +3 Hz	5R
	2 KMnO4+_ ZnCl2 + 2 KCQ + 2 m (MnO4)2	DR
18	MnO2+Sn(OH)4 > SnO2 + Mn(OH)4	DR
19	7 O2+ C5H12O2 > 5 CO2 + 6H2O	Comb.
20	$\underline{\hspace{0.5cm}} H_2O_2 \rightarrow \hspace{0.5cm} H_2 + O_2$	Decomp
21	PtCl4+Cl2 > PtCl6	Synth

SPRING BENCHMARK #1 Review Problems - CHUNK #3

ammonium nitrite

D

Balanced

Skeleton Eq

5

71 LY)

		NOT INVARIA #1 REVIEW Floblettis - C	
Write	e and bal	ance the following	
	Beryllium chloride reacts with silver nitrate and make beryllium nitrate and silver chloride		
1	_60	cla +2Ag NO3 -> _	Be (NO3)2 +2, Ag Cl
2		ourns in oxygen. Carbon dioxide and water are pro-	
skele	the follow eton equa	ving information to identify the type of reaction, tion	name predicted products, and to write a balanced
Q#	Type	Reactants	Names of Predicted Products
			1
	D	potassium chlorate	potassium chloride + oxygen
3		potassium chlorate d LEq. 2 K (CLO3) -> 2 K C	
3			

(NH4) (NO2) -> N2+ 2 H20

nitrogen + water

	DR	iron(III) bromide + ammonium sulfide		
6	D-1		Iron (111) suifide + Ammonium promide	
	Balance Skeletor	1Eq. 2 Fe Br3 + 3 (NH4)25	-> FezS3 +6(NH4) Br	
	S	calcium oxide + diphosphorus pentoxide	calcium phosphate	
7	Balance Skeletor	1 Eq. 3 Ca 0 + P2 05 ->	Ca(PO4)2	
	SR	aluminum + copper (II) chloride	Aluminum Chloride, Copper	
8	Balance Skeletor	d 1Eq. 2A1 + 3CuCl2 →		
	SR	bromine + magnesium iodide	Iodine + magnestum bromude	
9	Balance Skeletor			
	D	sodium bicarbonate	sodium oxide + carbon dioxide + water	
10	Balanced Skeleton Eq. 2Na ACO3 -> _NazO+2CO2+_H2O			
	5	aluminum + oxygen	Alumenum oxide	
11	Balanced Skeleton Eq. 4Al+302 -> 2 Al203			
		iron (II) + silver acetate		
12	Balanced Skeleton Eq. Fe +2A9 (C2H3O2) -> 2A9 + Fe (C2H3O2) 2			